

PHENOLIC COMPOUNDS FROM THE HEARTWOOD OF  
*GARCINIA MULTIFLORA*

FA-CHING CHEN, YUH-MEEI LIN and JENG-CHIN HUNG

Chemistry Research Center, National Taiwan University, Taipei, Taiwan 107, China

(Received 3 May 1974)

**Key Word Index**—*Garcinia multiflora* Champ.; Guttiferae; apigenin; 1,3,6,7-tetrahydroxyxanthone; optically active biflavonoids; (−)-GB-1a; (+)-GB-2a; (+)-volkensiflavone; (+)-morelloflavone, i.e. (+)-fukugetin.

**Plant.** *Garcinia multiflora* Champ (Guttiferae). **Uses.** Furniture and cabinet work, yellow mordant dyestuff and medical. **Previous work.** On biflavonoids of stem barks [1]. On sister species; barks [1,2,5], heartwood [1,4,6-14], root [15], leaves [1,4], seed [16], and latex [17,18].

**Present work.** As part of a general screening programme of Formosan flora for antitumor compounds, we report the isolation and identification of seven phenolic compounds from the heartwoods of *G. multiflora*. This is the first reported isolation of apigenin and 1,3,6,7-tetrahydroxyxanthone from the subfamily Clusioideae.

The MeOH-extract of the dried heartwood-shavings was first extracted with  $C_6H_6$ , then followed by EtOAc. The EtOAc soluble part was chromatographed on a column of  $SiO_2$  eluting with  $C_6H_6$ -EtOAc (1:2) giving three Fractions 1, 3, then with EtOAc giving Fraction 4. Fraction 1 was rechromatographed on a polyamide column,

eluting with 70% aq. MeOH giving four Fractions 1a-1d. As the Fraction 1b and 1c were shown to be a mixture by TLC, the Fraction 1b was rechromatographed on a column of cellulose, eluting with 40% aq. MeOH giving two Fractions 1b<sub>1</sub> and 1b<sub>2</sub>. Fraction 1c was subjected to repeated preparative-scale TLC on silica gel with  $C_6H_6$ -pyridine formic acid (20:5:1) yielding Fraction 1c<sub>1</sub>. Evaporation of each Fraction (1a, 1b<sub>1</sub>, 1b<sub>2</sub>, 1c<sub>1</sub>, 1d, 2 and 3) and recrystallization from MeOH afforded seven compounds (A-G) which were characterized as apigenin, 1,3,6,7-tetrahydroxyxanthone, GB-1a, GB-2a, (+)-volkensiflavone, (+)-morelloflavone and (±)-morelloflavone respectively. The constitutions of the Fraction 4 are under investigation. All the seven compounds (A-G) gave a red colour in the Mg-HCl test. The data of their UV spectra were shown in Table 1.

**Compound A.** Yellow crystals, m.p. 344-346; triacetate, m.p. 183-185° [19],  $M^+$  *m/e* 396; UV

Table 1. UV spectra and  $R_f$  values of compounds A-F from the heartwood of *Garcinia multiflora*

| $\lambda_{max}$ (nm)                       | Compound                                                |                                                      |                                          |                                           |                                           |                                                                                  |
|--------------------------------------------|---------------------------------------------------------|------------------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------|
|                                            | A<br>(Apigenin)                                         | B<br>(1,3,6,7-Tetrahydroxyxanthone)                  | C<br>(GB-1a)                             | D<br>(GB-2a)                              | E<br>(Volkensiflavone)                    | F<br>(Morelloflavone)                                                            |
| MeOH (log $\epsilon$ )                     | 222 (4.26)<br>266 (4.27)<br>295 sh (4.11)<br>335 (4.28) | 257 (4.40)<br>254 (4.55)<br>312 (4.24)<br>361 (4.12) | 231 (3.38)<br>292 (3.50)<br>329 sh (3.0) | 226 (3.54)<br>255 sh (3.91)<br>291 (4.37) | 215 (4.73)<br>275 sh (4.49)<br>289 (4.53) | 208 (4.81)<br>225 (4.70)<br>261 (4.36)<br>274 (4.45)<br>286 (4.47)<br>337 (4.29) |
| $AlCl_3$ -MeOH                             | 226, 276, 301,<br>343, 383                              | 210, 231, 266,<br>285 sh, 317, 351,<br>418           | 232, 314, 392                            | 226, 255 sh,<br>310, 375 sh               | 224, 282 sh, 308,<br>345, 385             | 223, 275,<br>307, 428                                                            |
| $AlCl_3$ -HCl-MeOH                         | 227, 278, 300,<br>342, 385                              | 204, 230, 262,<br>280 sh, 336, 402                   | 230, 312, 390                            | 218, 254 sh,<br>306, 340 sh               | 224, 283 sh, 304,<br>344, 384             | 231, 262, 284,<br>354, 390                                                       |
| NaOAc-MeOH                                 | 221, 269, 297,<br>343                                   | 235, 256, 316,<br>370                                | 233, 293, 329                            | 223, 256 sh,<br>290, 329                  | 275 sh, 284, 318                          | 256, 277, 320<br>387                                                             |
| NaOAc-H <sub>3</sub> BO <sub>3</sub> -MeOH | 225, 268, 297 sh,<br>335                                | 224 sh, 259, 317,<br>368                             | 231, 292, 328 sh                         | 226, 256 sh,<br>293, 340 sh               | 275 sh, 288, 330 sh                       | 263, 286, 373                                                                    |
| $R_f$ × 100                                | 51, 07                                                  | 36, 06                                               | 24, 47                                   | 18, 44                                    | 20, 34                                    | 09, 30                                                                           |

$R_f$ s on Silica gel TLC, in  $C_6H_6$ -pyridine-HCO<sub>2</sub>H (40:10:2), and PPC (Whatman No. 1), 15% HOAc.

(Table 1) identified as apigenin confirmed by comparison with an authentic sample (m.m.p., TLC, PPC, IR and NMR).

**Compound B.** Yellow crystals, m.p.  $>300^\circ$ . Red with Mg-HCl and green with alcoholic  $\text{FeCl}_3$ . IR: 3300 (OH), 1650 (conj. CO), 1620, 1580, 1510 and  $1485\text{ cm}^{-1}$  (arom.). UV (Table 1) indicates a xanthone bearing 1 or 8-OH and an *ortho*-dihydroxy group. NMR ( $\text{DMSO}-d_6$ ) showed four OH groups at  $\delta$  13.30 (s, 1H) (OH-1) and 11.03–9.72 (br, 3H) (3  $\times$  OH); two isolated aromatic protons at  $\delta$  7.50 (s, 1H) (H-8) and 7.00 (s, 1H) (H-5); two aromatic protons as *meta*-coupled doublets ( $J$  2 Hz) at  $\delta$  6.45 (1H) (H-4) and 6.27 (1H) (H-2). The above evidence suggested that B was 1,3,6,7-tetrahydroxyxanthone. This was supported by its acetate, m.p. 192–194°,  $\text{M}^+ m/e$  428; NMR ( $\text{CDCl}_3$ ); four acetoxy protons appeared at  $\delta$  2.47 (s, 3H) (OAc-1) and 2.34 (s, 9H) (3  $\times$  OAc); four aromatic protons at  $\delta$  8.04 (s) (H-8), 7.42 (s) (H-5), 7.27 (d,  $J$  2 Hz) (H-4) and 6.87 (d,  $J$  2 Hz) (H-2). The structure was confirmed by comparison with an authentic sample and its acetate [20] (TLC, PPC, IR and NMR).

**Compound C.** Pale yellow crystals, m.p. 210–212°,  $[\alpha]_D^{20} -8.0^\circ$ .  $\text{C}_{30}\text{H}_{22}\text{O}_{10}$ ,  $\text{M}^+ m/e$  542. IR at 3300 (OH), 1640 (conj. CO), 1615 and  $1520\text{ cm}^{-1}$  (arom.). The UV (Table 1), showed a flavanone with OH groups at 5- and 7-positions. NMR (acetone- $d_6$ ) showed protons of OH groups at  $\delta$  12.62 (s, 1H) (OH-5''), 12.40 (s, 1H) (OH-5) and 8.17–9.17 (br, 1H); 8 aromatic protons as two sets of  $\text{A}_2\text{B}_2$  doublets ( $J$  9 Hz) at  $\delta$  7.33 (2H) (H-2'', 6''), 6.90 (2H) (H-3'', 5'') and  $\delta$  7.25 (2H) (H-2', 6'), 6.80 (2H) (H-3', 5'); two aromatic protons as *meta*-coupled doublets ( $J$  3 Hz) at  $\delta$  6.03 (1H) (H-8) and 5.93 (1H) (H-6); one isolated aromatic protons at  $\delta$  5.95 (s, 1H) (H-6''); two protons in the ring 1-C as *trans*-coupled doublets ( $J$  12 Hz) at  $\delta$  5.77 (1H) (H-2) and 4.77 (1H) (H-3); three protons in the ring 2-C at  $\delta$  5.47 (br, 1H) (H-2'') and 3.07–2.63 (m, 2H) (H-3''). On methylation with  $\text{Me}_2\text{SO}_4\text{--K}_2\text{CO}_3$  in dry acetone C gave a hexamethyl ether, m.p. 131–134°,  $\text{M}^+ m/e$  626. IR 2990, 2930, 2900, 2830 (OMe); 1675 (flavanone CO), 1600, 1570 and  $1515\text{ cm}^{-1}$  (arom.), and was transparent around  $1650\text{ cm}^{-1}$  indicating no chalcone, although isomerization of flavanone to chalcone during methylation has been reported [10]. NMR  $\text{CDCl}_3$  showed six OMe groups at  $\delta$  3.90 (s, 6H), 3.83 (s, 6H) and 3.80 (s, 6H); eight aromatic protons as two sets of  $\text{A}_2\text{B}_2$  doublets ( $J$

8 Hz) at  $\delta$  7.28 (2H) (H-2', 6'), 6.82 (2H) (H-3', 5'), 7.32 (2H) (H-2'', 6''); 6.90 (2H) (H-3'', 5''); 2 aromatic protons as *meta*-coupled doublets ( $J$  2 Hz) at  $\delta$  6.17 (1H) (H-8), 6.08 (1H) (H-6); one isolated aromatic proton at  $\delta$  6.15 (s, 1H) (H-6''); two protons in the heterocyclic ring 1-C of a flavanone unit as doublets ( $J$ , 12 Hz) at  $\delta$  5.73 (1H) (H-2) and 4.70 (1H) (H-3); 3 protons in the ring 2-C of another flavanone unit as multiplets at  $\delta$  5.28 (1H) (H-2'') and 2.72 (2H) (H-3''). From the above data the structure of the C must be a binaringenin with a 3-6'' or 3-8'' linkage between the ring 1-C and the ring 2-A, which was confirmed as GB-1a (3-8'' linkage) by comparison with an authentic sample [10] (m.m.p., TLC, PPC, IR and NMR).

**Compound D.** Pale yellow powder, m.p. 214–216° (dec.),  $[\alpha]_D^{20} +28^\circ$ .  $\text{C}_{30}\text{H}_{22}\text{O}_{11}$ ,  $\text{M}^+ m/e$  558. IR at 3300 (OH), 1645 (conj. CO), 1610 and  $1520\text{ cm}^{-1}$  (arom.). NMR (acetone- $d_6$ ) showed seven OH groups at  $\delta$  12.43 (s, 1H) (OH-5''), 12.27 (s, 1H) (OH-5), 10.37–9.03 (br, 2H) and 8.87–7.83 (br, 3H); ten aromatic protons at  $\delta$  7.50–6.97 (7H) (H-2', 6', 5', 2'', 6'', 3'', 5'') and 6.07 (bs, 3H) (H-6, 8, 6''); 2 protons in the heterocyclic ring 1-C as doublets ( $J$  12 Hz) at  $\delta$  5.83 (1H) (H-2) and 4.83 (1H) (H-3); 3 protons in the ring 2-C at 5.43 (br, 1H) (H-2'') and 2.83 (br, 2H) (H-3''). Methylation gave a heptamethyl ether, m.p. 128–130°,  $\text{M}^+ m/e$  656. IR 2970, 2930, 2900, 2830 (OMe), 1680 (flavanone CO), 1605, 1575 and  $1520\text{ cm}^{-1}$  (arom.). NMR ( $\text{CDCl}_3$ ) showed 7 OMe groups at  $\delta$  3.93 (s, 6H), 3.92 (s, 3H), 3.82 (s, 6H) and 3.78 (s, 6H); 3 protons in the heterocyclic ring 2-C of a flavanone unit at  $\delta$  2.83 (m, 2H) and 5.30 (m, 1H); 2 protons in the ring 1-C of another flavanone unit at  $\delta$  4.70 (d,  $J$  12 Hz, 1H) and 5.73 (d,  $J$  12 Hz, 1H); 3 aromatic protons at  $\delta$  6.05 (d,  $J$  2 Hz, 1H) (H-6) and 6.13 (b, 2H) (H-8 and 6''); 7 protons in two phenyl rings at  $\delta$  7.25–6.67 (m, 7H). From these data the compound D was suggested to be GB-2a [10] (naringenin-3→8''-eriodyctyol) which was confirmed by comparison with an authentic sample (TLC, PPC, IR and NMR).

GB-1a and GB-2a were previously isolated from the heartwoods [10] of *G. buchananii* and *G. eugeniiifolia*, barks [1] of *G. spicata*, *G. multiflora* and *G. linii*, heartwoods and leaves of *G. xanthochymus* [1], but no information on their optical properties is available. It is noteworthy that GB-1a

and GB-2a isolated in the present investigation are (–) and (+) rotatory respectively.

**Compound E.** Pale yellow crystals m.p. 290–292°.  $[\alpha]_D^{20} + 1.6^\circ$ .  $C_{30}H_{20}O_{10}$ ,  $M^+ m/e 540$ . IR 3545, 3150 (OH), 1640 (conj. CO), 1610, 1590, 1560 and 1510  $\text{cm}^{-1}$  (arom.). UV (Table 1) NMR (DMSO- $d_6$ ) showed 6 OH groups at  $\delta$  12.47 (d, 1H) (OH-5), 13.27 (d, 1H) (OH-5''), 11.83–10.0 (br, 3H) and 9.50 (bs, 1H); 8 aromatic protons as two sets of  $A_2B_2$  doublets ( $J$  9 Hz) at  $\delta$  7.13 (2H) (H-2', 6'), 6.63 (2H) (H-3', 5') and 7.70 (2H) (H-2'', 6''), 6.87 (2H) (H-3'', 5''); 3 aromatic protons at  $\delta$  6.30 (d,  $J$  2 Hz, 1H) (H-8), 6.22 (bs, 2H) (H-6, 6''); one isolated proton at  $\delta$  6.50 (s, 1H) (H-3''); 2 protons in the ring 1-C as doublets ( $J$  12 Hz) at  $\delta$  5.80 (1H) (H-2) and 4.90 (1H) (H-3).

Methylation afforded hexamethyl ether, m.p. 258–260°.  $M^+ m/e 624$ . IR 2990, 2950, 2850 (OMe), 1680 (flavanone CO), 1645 (flavone CO), 1600, 1580, 1510 and 1490 (arom.). NMR of E (DMSO- $d_6$ ) revealed the presence of six OH groups at  $\delta$  13.27 (d, 1H), 12.47 (d, 1H), 11.83 10.0 (br, 3H), 9.50 (bs, 1H), whereas the signals of the aromatic regions were not readily resolved. NMR of E methyl ether ( $CDCl_3$ ) showed 6 OMe groups at  $\delta$  3.93 (s, 3H), 3.87 (s, 3H), 3.83 (s, 6H), 3.77 (s, 3H) and 3.67 (s, 3H); 8 aromatic protons as 2 sets of  $A_2B_2$  doublets (J 9 Hz) at  $\delta$  7.13 (2H) (H-2', 6'), 6.63 (2H) (H-3', 5'), 7.70 (2H) (H-2'', 6'') and 6.87 (2H) (H-3'', 5''); 2 aromatic protons as *meta*-coupled doublets ( $J$  2 Hz) at  $\delta$  6.30 (1H) (H-8), 6.22 (1H) (H-6); one isolated aromatic protons at  $\delta$  6.23 (s, 1H) (H-6''); one proton in the pyranone of a flavone unit at  $\delta$  6.50 (s, 1H) (H-3''); 2 protons in the heterocyclic ring of a flavanone unit as doublets ( $J$  12 Hz) at  $\delta$  5.80 (1H) (H-2) and 4.90 (1H) (H-3). From these data E was suggested to be volkensiflavone [12,15] (naringenin-3→8''-apigenin) which was confirmed by comparison with an authentic sample by the courtesy of Dr Scheinmann. The optical rotation of volkensiflavone, isolated from *G. volkensii* [12], *G. talbotii* [15], *G. livingstonii* [4], and *G. xanthochymus* [1] as m.p. 250°, 300°, 267–268° and 290–293° respectively, was not mentioned except the last one which was reported to be optically inactive. Volkensiflavone isolated in this investigation is (+).

**Compound F.** Yellow powder, m.p. 249–250°.  $[\alpha]_D^{20} + 17^\circ$ .  $C_{30}H_{20}O_{11}$ ,  $M^+ m/e 556$ . UV (Table 1). IR 3350 (OH), 1645 (conj. CO), 1615, 1570, 1550

and 1510  $\text{cm}^{-1}$  (arom.). NMR (DMSO- $d_6$ ) revealed the presence of seven OH groups at  $\delta$  12.43 (s, 1H), 13.27 (s, 1H), 11.53 (br, 1H), 10.97 (br, 1H), 10.0 (br, 1H), 9.65 (br, 1H) and 9.42 (br, 1H), whereas the signals of the aromatic and aliphatic regions were not readily resolved. These difficulties have been overcome by using acetone- $d_6$  as solvent, but in this case the signals of all the OH groups except the two hydrogen bonded OH-5 ( $\delta$  13.23 and 12.45) were not visible; four aromatic protons appeared as a set of  $A_2B_2$  doublets ( $J$  8 Hz) at  $\delta$  7.30 (2H) (H-2', 6') and 6.63 (2H) (H-3', 5'); three aromatic protons in the 1,3,4-trisubstituted benzene ring at  $\delta$  7.52 (m, 2H) (H-2'', 6'') and 6.68 (d,  $J$  8 Hz, 1H) (H-5''); two aromatic protons as *meta*-coupled doublets ( $J$  2 Hz) at  $\delta$  6.38 (1H) (H-8) and 6.10 (1H) (H-6); two isolated protons at  $\delta$  6.55 (s, 1H) (H-3'') and 6.08 (s, 1H) (H-6''); two protons in the ring 1-C as *trans*-coupled doublets ( $J$  12 Hz) at  $\delta$  5.87 (1H) (H-2) and 5.07 (1H) (H-3). Methylation gave a heptamethyl ether, m.p. 212–215°.  $M^+ m/e 654$ . IR 1680 (flavanone CO) and 1645 (flavone CO). NMR ( $CDCl_3$ ) showed seven methoxyl groups as singlets at  $\delta$  4.00 (3H), 3.97 (3H), 3.90 (6H), 3.85 (3H), 3.80 (3H), 3.73 (3H); four protons in the 1,4-disubstituted benzene ring as a set of  $A_2B_2$  doublets (J 8 Hz) at  $\delta$  7.23 (2H) (H-2', 6') and 6.73 (2H) (H-3', 5'); three protons in 1,3,4-trisubstituted benzene ring at  $\delta$  7.63 (q,  $J$  9 Hz, 2 Hz, 1H) (H-6''), 7.30 (d,  $J$  2 Hz, 1H) (H-2'') and 6.93 (d,  $J$  9 Hz, 1H) (H-5''); two protons in a flavanone unit as doublets (J 12 Hz) at  $\delta$  5.96 (1H) (H-2) and 5.03 (1H) (H-3); two aromatic protons as *meta*-coupled doublets (J 2 Hz) at  $\delta$  6.40 (1H) (H-8) and 6.27 (1H) (H-6); two isolated aromatic protons at  $\delta$  6.60 (s, 1H) (H-3'') and 6.30 (s, 1H) (H-6''). From these data F was suggested to be morelloflavone (naringenin-3→8''-luteolin) i.e. fukugetin [3,14]. The NMR, TLC and PPC of F were identical with those of an authentic sample of morelloflavone kindly supplied by Dr. Scheinmann, but its IR spectrum (KBr) was different which may be explainable on its being optically active [3]. The NMR, IR, TLC and m.m.p. of the heptamethyl ether of F were identical with those of an authentic sample kindly supplied by Professor Venkataraman.

**Compound G.** Yellow crystals, m.p. 280–281°.  $M^+ m/e 556$ , its UV and NMR spectra were identical with those of the above compound F. Thus it

was seen to be a mixture of ( $\pm$ ) and (-)-morello-flavone.

#### EXPERIMENTAL

*Extraction* of *Garcinia multiflora*. A section of the heartwood of *G. multiflora* was collected from the No. 43 Compartment, Tawu, located near Taitung at height of 700 m by Prof. J. C. Liao, on 28 Jan., 1970.

The dried heartwood (shaving, 2.8 kg) was extracted 4  $\times$  boiling MeOH. The extract (35 l.) was evaporated to yield a brown oily matter which was extracted with  $C_6H_6$ . The insoluble part was extracted with EtOAc. The EtOAc yielded a light brown solid (23 g) which was chromatographed on  $SiO_2$  (500 g) eluting with  $C_6H_6$ -EtOAc (1:2) to give Fractions 1 (4 g), 2 (0.3 g) and 3 (1.7 g), and then eluting with EtOAc to give 4 (3.3 g). Fraction 1 was then rechromatographed on a column of polyamide (nylon 66, 200 g) eluting with 70% aq. MeOH to give Fractions 1a (0.1 g), 1b (0.6 g), 1c (0.35 g) and 1d (0.5 g). As the Fraction 1b contained two compounds shown by TLC, it was rechromatographed on a column of cellulose (30 g) eluting with 40% aq. MeOH to give Fractions 1b<sub>1</sub> (0.15 g) and 1b<sub>2</sub> (0.4 g). The Fraction 1c was separated by preparative TLC (silica gel) with  $C_6H_6$ -pyridine-formic acid (40:10:2) gave Fraction 1c<sub>1</sub>.

*Acknowledgements*—The authors wish to thank Professor Masaichi Yasue for elementary analysis; Professor H. D. Locksley, Dr F. Scheinman, Professor S. Iseda and Professor K. Venkataraman for the generous gift of authentic samples; Professor Y. Kato for polyamide; Professor J. C. Liao for collecting timber; and Professor W. C. Lin, Professor C. H. Yang and the Faculty members for NMR, UV, IR and MS measurements. This work was supported by the National Science Council as the research project of Chemistry Research Center, National Taiwan University.

#### REFERENCES

1. Konoshima, M., Ikeshiro, Y., Miyahara, S. and Yen, K. Y. (1970) *Tetrahedron Letters* 4203.
2. Konoshima, M. and Ikeshiro, Y. (1970) *Tetrahedron Letters* 1717.
3. Konoshima, M., Ikeshiro, Y., Nishinaga, A., Matsuura, T., Kubota, T. and Sakamoto, H. (1969) *Tetrahedron Letters* 121.
4. Pelter, A., Warren, R., Chexal, K. K., Handa, B. K. and Rahman, W. (1971) *Tetrahedron* **27**, 1625.
5. Shinoda, J. (1927) *Yakugakuzasshi* **47**, 186, and refs quoted therein.
6. Perkin, A. G. and Phipps, S. (1904) *J. Chem. Soc.* **85**, 58.
7. Shinoda, J. and Ueda, S. (1933) *Yakugakuzasshi* **53**, 921.
8. Murakami, M. (1934) *Proc. Imp. Acad.* **10**, 568.
9. Jackson, B., Locksley, H. D., Moore, I. and Scheinmann, F. (1968) *J. Chem. Soc. C*, 2579 and refs quoted therein.
10. Jackson, B., Locksley, H. D., Scheinmann, F. and Wolstenholme, W. A. (1971) *J. Chem. Soc. C*, 3791.
11. Jackson, B., Locksley, H. D. and Scheinmann, F. (1969) *J. Chem. Soc. C*, 2201.
12. Herbin, G. A., Jackson, B., Locksley, H. D., Scheinmann, F. and Wolstenholme, W. A. (1970) *Phytochemistry* **9**, 221.
13. Pelter, A. (1967) *Tetrahedron Letters* 1767; (1968) *ibid.* 897.
14. Karanjaonkar, C. G., Radhakrishnan, P. V. and Venkataraman, K. (1967) *Tetrahedron Letters* 3195.
15. Joshi, B. S., Kamat, V. N. and Viswanathan, N. (1970) *Phytochemistry* **9**, 881.
16. Ranachandran, G. N., Bhat, H. B., Nair, P. M., Raghavan, V. K. V. and Venkataraman, K. (1963) *Tetrahedron Letters* 459.
17. Karanjaonkar, C. G., Nair, P. M. and Venkataraman, K. (1966) *Tetrahedron Letters* 687.
18. Ollis, W. D., Ramsay, W. V. J., Sutherland, I. O. and Mongkolsuk, S. (1965) *Tetrahedron* **21**, 1455.
19. Gripenberg, J. (1962) *The Chemistry of Flavonoid Compounds* (Geissman, T. A. ed.), p. 418. Pergamon Press, Oxford.
20. Iseda, S. (1957) *Bull. Chem. Soc. Japan* **30**, 625.